CHAPTER 8
ARTICULATIONS AND MOVEMENT

CHAPTER OVERVIEW: This chapter describes and defines articulations, and analyzes movement at joints based on both the bony and soft tissue structures present at a joint. The anatomical features of different types of joints are described in detail. The types of body movements are discussed in general and in relation to the joints at which they normally occur.

OUTLINE (one or two fifty-min. lectures):
Seeley, A&P, 5/e

<table>
<thead>
<tr>
<th>Chapt.</th>
<th>Topic Outline, Chapter 8, 5/e</th>
<th>Figures & Tables</th>
<th>Transparency Acetates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>I. Naming Joints, p. 225</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II. Classes of Joints, p. 225</td>
<td>Predict Quest. 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A. Fibrous Joints (Joined by Dense Regular CT)</td>
<td>Table 8.1, p.226</td>
<td>TA-147</td>
</tr>
<tr>
<td></td>
<td>1. Sutures & Fontanels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Fontanels</td>
<td>Predict Quest. 2;</td>
<td>TA-147</td>
</tr>
<tr>
<td></td>
<td>2. Syndesmoses</td>
<td>Fig. 8.1, p.227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Gomphoses</td>
<td>Fig. 8.2, p.227</td>
<td>TA-148</td>
</tr>
<tr>
<td>4</td>
<td>B. Cartilaginous Joints (Joined by Cartilage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Synchondroses (Hyaline Cartilage)</td>
<td>Fig. 8.3, p.228</td>
<td>TA-149</td>
</tr>
<tr>
<td></td>
<td>2. Symphyses (Fibrocartilage)</td>
<td>Fig. 8.4, p.228</td>
<td>TA-150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical Note, p.229</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3. Synovial Joints</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Specialized CT Structure of Joint</td>
<td>Fig. 8.5, p.229</td>
<td>TA-151</td>
</tr>
<tr>
<td></td>
<td>1). Fibrous Capsule &</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synovial Membrane</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2). Articular Cartilages =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyaline Cartilage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3). Synovial Fluid & Bursae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>b. Types of Synovial Joints</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. Types of Body Movements, p. 230

A. Angular Movements

8 1. Flexion and Extension
 a. Plantar Flexion & Dorsiflexion
 Fig. 8.7a-e, p.233
 Clinical Note, p.232
 Fig. 8.7f, p.233

9 2. Abduction and Adduction
 Fig. 8.7g, p.234

B. Circular Movements

11 1. Rotation
 Fig. 8.7i, p.234

2. Pronation and Supination
 Fig. 8.7j, p.234

3. Circumduction
 Fig. 8.7k, p.234

C. Special Movements

1. Elevation and Depression
 Fig. 8.7l, p.235

2. Protraction and Retraction
 Fig. 8.7m, p.235

3. Excursion
 Fig. 8.7n, p.235

4. Opposition and Reposition
 Fig. 8.7o, p.235

10 5. Inversion and Eversion
 Fig. 8.7p, p.235

D. Combination Movements

 Predict Quest. 4

IV. Description of Selected Joints

Clinical Focus,
12 A. Temporomandibular Joint (Mandible & Temporal Bone)
 Clinical Note, p.236
 1. Structure
 Fig. 8.8, p.237 TA-152

12 B. Shoulder Joint (Humerus & Scapula)
 Clinical Note, p.237
 Predict Quest. 5
 1. Structure
 Table 8.2 , p.237
 Fig.8.9, p.238 TA-153

12 C. Hip Joint (Femur & Acetabulum of Os Coxa)
 Clinical Note, p.239
 1. Structure
 Table 8.3, p. 239
 Fig.8.10, p.239 TA-154
 2. Ball & Socket; Reinforcing Ligaments

12, 13 D. Knee Joint (Femur & Tibia)
 Clinical Note, p.241
 1. Structure
 Table 8.4, p.242
 Fig. 8.11, pp.241 TA-155
 2. Analysis of Movement
 a. Bone Surfaces - Hinge
 b. Menisci and Patellar Ligaments
 c. Range of Movement

12, 14 E. AnkleJoint (Tibia, Fibula & Talus)
 Clinical Note, p.242
 1. Structure
 Table 8.5, p. 243
 Fig. 8.12, p.243 TA-156
 2. Analysis of Movement
 a. Bone Surfaces - Modified Ball & Socket
 b. Range of Movement
1. Structure

2. Functional Significance of the Arches

IMPORTANT CONSIDERATIONS: The names of specific structures and parts of joints are best studied when the students can manipulate models and get a spatial sense for how the joints are constructed. This material can be combined with the material on the skeleton, so that the bones and their articulations are mentioned together. This material has two different logical splits. One split correlating joint structure and body movements and another between the general principles and the specific examples.

SEE INSTRUCTOR’S MANUAL AND COURSE SOLUTIONS MANUAL FOR ADDITIONAL REFERENCES.