Chapter 1 Wastewater Engineering: An Overview

1-1 Terminology

1-2 Impact of Regulations on Wastewater Engineering

1-3 Health and Environmental Concerns in Wastewater Management

1-4 Wastewater Characteristics
 Improved Analytical Techniques
 Importance of Improved Wastewater Characterization

1-5 Wastewater Treatment
 Treatment Methods
 Current Status
 New Directions and Concerns
 Future Trends in Wastewater Treatment

1-6 Wastewater Reclamation and Reuse
 Current Status
 New Directions and Concerns
 Future Trends in Biosolids Processing

1-7 Biosolids and Residuals Management
 Current Status
 New Directions and Concerns
 Future Trends in Technology

References
Chapter 2 Constituents in Wastewater

2-1 Wastewater Constituents
 Constituents Found in Wastewater
 Constituents of Concern in Wastewater Treatment

2-2 Sampling and Analytical Procedures
 Sampling
 Methods of Analysis
 Units of Measurement for Physical and Chemical Parameters
 Useful Chemical Relationships

2-3 Physical Characteristics
 Solids
 Particle Size Distribution
 Turbidity
 Color
 Absorption / Transmittance
 Temperature
 Conductivity
 Density, Specific Gravity, and Specific Weight

2-4 Inorganic Nonmetallic Constituents
 pH
 Chlorides
 Alkalinity
 Nitrogen
 Phosphorus
 Sulfur
 Gases
 Odors

2-5 Metallic Constituents
 Importance of Metals
 Sources of Metals
 Sampling and Methods of Analysis
 Typical Effluent Discharge Limits for Metals

2-6 Aggregate Organic Constituents
 Measurement of Organic Content
 Biochemical Oxygen Demand (BOD)
 Total And Soluble Chemical Oxygen Demand (COD and SCOD)
 Total and Dissolved Organic Carbon (TOC and DOC)
 UV-Absorbing Organic Constituents
 Theoretical Oxygen Demand
 Interrelationships between BOD, COD, and TOC
 Oil and Grease
 Surfactants
2-7 Individual Organic Compounds
 Priority Pollutants
 Analysis of Individual Organic Compounds
 Volatile Organic Compounds (VOCs)
 Disinfection Byproducts
 Pesticides and Agricultural Chemicals
 Emerging Organic Compounds

2-8 Biological Characteristics
 Microorganisms Found in Surface Waters and Wastewater
 Pathogenic Organisms
 Use of Indicator Organisms
 Enumeration and Identification of Bacteria
 Enumeration and Identification of Viruses
 Polymerase Chain Reaction (PCR)
 Development of Microorganisms Typing Techniques
 New and Reemerging Microorganisms

2-9 Toxicity Tests
 Toxicity Terminology
 Toxicity Testing
 Analysis of Toxicity Test Results
 Application of Toxicity Test Results
 Identification of Toxicity Components

Problems and Discussion Topics
References
Chapter 3 Analysis and Selection of Wastewater Flowrates and Constituent Loadings

3-1 Components of Wastewater Flows

3-2 Wastewater Sources and Flowrates
 Domestic Wastewater Sources and Flowrates
 Strategies for Reducing Interior Water Use and Wastewater Flowrates
 Water Use in Developing Countries
 Sources and Rates of Industrial (Nondomestic) Wastewater Flows
 Infiltration/Inflow
 Exfiltration from Collection Systems
 Combined System Flowrates

3-3 Statistical Analysis of Flowrates, Constituent Concentrations, and Mass Loadings
 Common Statistical Parameters
 Graphical Analysis of Data

3-4 Analysis of Wastewater Flowrate Data
 Definition of Terms
 Variations in Wastewater Flowrates
 Wastewater Flowrate Factors

3-5 Analysis of Constituent Mass Loading Data
 Wastewater Constituent Concentrations
 Variations in Constituent Concentrations
 Flow-Weighted Constituent Concentrations
 Calculation of Mass Loadings
 Effect of Mass Loading Variability on Treatment Plant Performance

3-6 Selection of Design Flowrates and Mass Loadings
 Design Flowrates
 Design Mass Loadings

Problems and Discussion Topics
References
Chapter 4 Introduction to Process Analysis and Selection

4-1 Reactors Used for the Treatment of Wastewater
 Types of Reactors
 Application of Reactors
 Hydraulic Characteristics of Reactors

4-2 Mass-Balance Analysis
 The Mass-Balance Principle
 Preparation of Mass Balances
 Application of the Mass-Balance Analysis
 Steady-State Simplification

4-3 Modeling Ideal Flow in Reactors
 Ideal Flow in Complete-Mix Reactor
 Ideal Flow in Plug-Flow Reactor

4-4 Analysis of Nonideal Flow in Reactors Using Tracers
 Factors Leading to Nonideal Flow in Reactors
 Need For Tracer Analysis
 Types of Tracers
 Conduct of Tracer Tests
 Analysis of Tracer Response Curves
 Practical Interpretation of Tracer Measurements

4-5 Modeling Nonideal Flow in Reactors
 The Distinction between Molecular Diffusion, Turbulent Diffusion, and Dispersion
 Plug-Flow Reactor with Axial Dispersion
 Complete-Mix Reactors in Series

4-6 Reactions, Reaction Rates, and Reaction Rate Coefficients
 Types of Reactions
 Rate of Reaction
 Reaction Order
 Types of Rate Expressions
 Rate Expressions Used in Environmental Modeling
 Effects of Temperature on Reaction Rate Coefficients
 Analysis of Reaction Rate Coefficients
4-7 Modeling Treatment Process Kinetics
 Batcher Reactor with Reaction
 Complete-Mix Reactor with Reaction
 Complete-Mix Reactors in Series with Reaction
 Ideal Plug-Flow Reactor with Reaction
 Comparison of Complete-Mix and Plug-Flow Reactors with Reaction
 Ideal Plug-Flow Reactor with Retarded Reaction
 Plug-Flow Reactor with Axial Dispersion and Reaction
 Other Reactor Flow Regimes and Reactor Combinations

4-8 Treatment Processes Involving Mass Transfer
 Basic Principle of Mass Transfer
 Gas-Liquid Mass Transfer
 Liquid-Solid Mass Transfer

4-9 Introduction to Process Selection
 Important Factors in Process Selection
 Process Selection Based on Reaction Kinetics
 Process Selection Based on Mass Transfer
 Process Design Based on Loading Criteria
 Bench Tests and Pilot-Plant Studies
 Reliability Considerations in Process Selection

Problems and Discussion Topics
References
Chapter 5 Physical Unit Operations

5-1 Screening
Classification of Screens
Coarse Screens (Bar Racks)
Fine Screens
Microscreens
Screenings Characteristics and Quantities

5-2 Coarse Solids Reduction
Comminutors
Macerators
Grinders
Design Considerations

5-3 Flow Equalization
Description/Application
Design Considerations

5-4 Mixing and Flocculation
Continuous Rapid Mixing in Wastewater Treatment
Continuous Mixing in Wastewater Treatment
Energy Dissipation in Mixing and Flocculation
Time Scale in Mixing
Types of Mixers Used for Rapid Mixing in Wastewater Treatment
Types of Mixers Used for Flocculation in Wastewater Treatment
Types of Mixers Used for Continuous Mixing in Wastewater Treatment
New Developments in Mixing Technology

5-5 Gravity Separation Theory
Description
Particle Settling Theory
Discrete Particle Settling
Flocculent Particle Settling
Inclined Plate and Tube Settling
 Hindered (Zone) Settling
Compression Settling
Gravity Separation in an Accelerated Flow Field

5-6 Grit Removal
Types of Grit Chambers
Horizontal-Flow Grit Chambers
Aerated Grit Chambers
Vortex-Type Grit Chambers
Solids (Sludge) Degritting
Grit Characteristics, Quantities, Processing, and Disposal

5-7 Primary Sedimentation
Description
Sedimentation Tank Performance
Design Considerations
Characteristics and Quantities of Solids (Sludge) and Scum
5-8 High-Rate Clarification
 Enhanced Particle Flocculation
 Analysis of Ballasted Particle Flocculation and Setting
 Process Application

5-9 Large-Scale Swirl and Vortex Separators for Combined Wastewater and Stormwater

5-10 Flotation
 Description
 Design Considerations for Dissolved-Air Flotation Systems

5-11 Oxygen Transfer
 Description
 Evaluation of Oxygen Transfer Coefficient

5-12 Aeration Systems
 Types of Aeration Systems
 Diffused-Air Aeration
 Mechanical Aerators
 Energy Requirement for Mixing in Aeration Systems
 Generation and Dissolution of High-Purity Oxygen
 Postaeration

5-13 Removal of Volatile Organic Compounds (VOCs) by Aeration
 Emission of VOCs
 Mass Transfer Rates for VOCs
 Mass Transfer of VOCs from Surface and Diffused Air Aeration Process
 Control Strategies for VOCs

Problems and Discussion Topics
References
Chapter 6 Chemical Unit Processes

6-1 Role of Chemical Unit Processes in Wastewater Treatment
 Application of Chemical Unit Processes
 Considerations in the Use of Chemical Unit Processes

6-2 Fundamentals of Chemical Coagulation
 Basic Definitions
 Nature of Particles in Wastewater
 Development and Measurement of Surface Charge
 Particle-Particle Interactions
 Particle Destabilization with Potential-Determining Ions and Electrolytes
 Particle Destabilization and Aggregation with Polyelectrolytes
 Particle Destabilization and Removal with Hydrolyzed Metal Ions

6-3 Chemical Precipitation for Improved Plant Performance
 Chemical Reactions in Wastewater Precipitation Applications
 Enhanced Removal of Suspended Solids in Primary Sedimentation
 Independent Physical-Chemical Treatment
 Estimation of Sludge Quantities from Chemical Precipitation

6-4 Chemical Precipitation for Phosphorus Removal
 Chemistry of Phosphate Precipitation
 Strategies for Phosphorus Removal
 Phosphorus Removal Using Metal Salts and Polymers
 Phosphorus Removal Using Lime
 Comparison of Chemical Phosphorus Removal Process
 Estimation of Sludge Quantities from Phosphorus Precipitation

6-5 Chemical Precipitation for Removal of Heavy Metals and Dissolved Inorganic Substances
 Precipitation Reactions
 Coprecipitation with Phosphorus

6-6 Chemical Oxidation
 Fundamentals of Chemical Oxidation
 Applications
 Chemical Oxidation of BOD and COD
 Chemical Oxidation of Nonbiodegradable Organic Compounds
 Chemical Oxidation of Ammonia

6-7 Chemical Neutralization, Scale Control, and Stabilization
 pH Adjustment
 Analysis of Scaling Potential
 Scaling Control
 Stabilization

6-8 Chemical Storage, Feeding, Piping, and Control Systems
 Chemical Storage and Handling
 Dry Chemical-Feed Systems
 Liquid Chemical-Feed Systems
 Gas Chemical-Feed Systems
 Initial Chemical Mixing

Problems and Discussion Topics
References
Chapter 7 Fundamentals of Biological Treatment

7-1 Overview of Biological Wastewater Treatment
 Objectives of Biological Treatment
 Some Useful Definitions
 Role of Microorganisms in Wastewater Treatment
 Types of Biological Processes for Wastewater Treatment
 Attached Growth Processes

7-2 Composition and Classification of Microorganisms
 Cell Components
 Cell Composition
 Environmental Factors
 Microorganism Identification and Classification
 Use of Molecular Tools

7-3 Introduction to Microbial Metabolism
 Carbon and Energy Sources for Microbial Growth
 Nutrient and Growth Factors Requirements

7-4 Bacterial Growth and Energetics
 Bacterial Reproduction
 Bacterial Growth Patterns in a Batch Reactor
 Bacteria Growth and Biomass Yield
 Measuring Biomass Growth
 Estimating Biomass Yield and Oxygen Requirements from Stoichiometry
 Estimating Biomass Yield from Bioenergetics
 Stoichiometry of Biological Reactions
 Biomass Synthesis Yields for Different Growth Conditions
 Observed versus Synthesis Yield

7-5 Microbial Growth Kinetics
 Microbial Growth Kinetics Terminology
 Rate of Utilization of Soluble Substrates
 Other Rate Expressions for the Utilization of Soluble Substrate
 Rate of Soluble Substrate Production from Biodegradable Particulate Organic Matter
 Rate of Biomass Growth With Soluble Substrates
 Kinetic Coefficients for Substrate Utilization and Biomass Growth
 Rate of Oxygen Uptake
 Effects of Temperature
 Total Volatile Suspended Solids and Active Biomass
 Net Biomass Yield and Observed Yield
7-6 Modeling Suspended Growth Treatment Processes
 Description of Suspended Growth Treatment Processes
 Biomass Mass Balance
 Substrate Mass Balance
 Mixed Liquor Solids Concentration and Solids Production
 The Observed Yield
 Oxygen Requirements
 Design and Operating Parameters
 Process Performance and Stability
 Model Plug-Flow Reactors

7-7 Modeling Attached Growth Treatment Processes
 Substrate Flux In Biofilms
 Substrate Mass Balance for Biofilm
 Substrate Flux Limitations

7-8 Aerobic Biological Oxidation
 Process Description
 Microbiology
 Stoichiometry of Aerobic Biological Oxidation
 Growth Kinetics
 Environmental Factors

7-9 Biological Nitrification
 Process Description
 Microbiology
 Stoichiometry of Biological Nitrification
 Growth Kinetics
 Environmental Factors

7-10 Biological Denitrification
 Process Description
 Microbiology
 Stoichiometry of Biological Denitrification
 Growth Kinetics
 Environmental Factors

7-11 Biological Phosphorus Removal
 Process Description
 Microbiology
 Stoichiometry of Biological Phosphorus Removal
 Growth Kinetics
 Environmental Factors
7-12 Anaerobic Fermentation and Oxidation

 Process Description
 Microbiology
 Stoichiometry of Anaerobic Fermentation and Oxidation
 Growth Kinetics
 Environmental Factors

7-13 Biological Removal of Toxic and Recalcitrant Organic Compounds

 Development of Biological Treatment Methods
 Anaerobic Degradation
 Aerobic Biodegradation
 Abiotic Losses
 Modeling Biotic and Abiotic Losses

7-14 Biological Removal of Heavy Metals

 Problems and Discussion Topics
 References
Chapter 8 Aerobic Suspended Growth Biological Treatment Processes

8-1 Introduction to the Suspended Growth Activated-Sludge Process
 Historical Development
 Description of Basic Process
 Evolution of the Activated-Sludge Process
 Recent Process Developments

8-2 Wastewater Characterization
 Key Wastewater Constituents for Process Design
 Measurement Methods for Wastewater Characterization
 Recycle Flows And Loadings

8-3 Fundamentals of Process Analysis and Control
 Process Design Considerations
 Process Control
 Operational Problems
 Activated-Sludge Selector Processes

8-4 Processes for BOD Removal and Nitrification
 Process Design Considerations
 Complete-Mix Activated-sludge Process
 Sequencing Batch Reactor Process
 Staged Activated Sludge Process
 Alternative Processes for BOD Removal and Nitrification
 Process Design Parameters
 Process Selection Considerations

8-5 Processes for Biological Nitrogen Removal
 Overview of Biological Nitrogen-Removal Processes
 Single-Sludge Biological Nitrogen-Removal Processes
 Process Design Considerations
 Anoxic / Aerobic Process Design
 Step-Feed Anoxic / Aerobic Process Design
 Intermittent Aeration Process Design
 Postanoxic Endogenous Denitrification
 Sequencing Batch Reactor Process Analysis
 Postanoxic Denitrification with an External Carbon Source
 Nitrogen Removal in Anaerobic Digestion Recycle Streams
 Alternative Process Configurations for Biological Nitrogen Removal
 Process Design Parameters
 Process Selection Considerations
8-6 Processes for Biological Phosphorous Removal

- Biological Phosphorus-Removal Processes
- Process Design Considerations
- Process Control
- Solids Separation Facilities
- Methods to Improve Phosphorus-Removal Efficiency in BPR Systems
- Biological Phosphorus-Removal Process Performance
- Alternative Processes for Biological Phosphorus Removal
- Process Design Parameters
- Process Selection Considerations
- Dissolved Oxygen Control
- Return Activated Sludge Control
- Sludge Wasting
- Oxygen Uptake Rates
- Microscopic Observations

8-7 Selection and Design of Physical Facilities for Activated-Sludge Processes

- Aeration System
- Aeration Tanks and Appurtenances
- Solids Separation
- Design of Solids Separation Facilities

8-8 Suspended Growth Aerated Lagoons

- Types of Suspended Growth Aerated Lagoons
- Process Design Considerations for Flowthrough Lagoons
- Dual-Powered Flowthrough Lagoon System

8-9 Biological Treatment with Membrane Separation

- Overview of Membrane Biological Reactors
- Process Description
- Membrane Fouling Control
- Process Capabilities

8-10 Simulation Design Models

- Model Matrix Format, Components, and Reactions
- Model Applications

Problems and Discussion Topics

References
Chapter 9 Aerobic Attached Growth and Combined Biological Treatment Processes

9-1 Background

 Evolution of Attached Growth Processes
 Mass Transfer Limitations

9-2 Trickling Filters

 Trickling Filter Classification and Applications
 Design of Physical Facilities
 Process Design Considerations
 Nitrification Design

9-3 Rotating Biological Contractors

 Process Design Consideration
 Physical Facilities For RBC Process
 RBC Process Design

9-4 Combined Aerobic Treatment Processes

 Trickling Filter – Solids Contact and Trickling Filter – Activated-Sludge Processes
 Activated Biofilter and Biofilter-Activated Sludge Processes
 Series Trickling-Filter Activated-Sludge Process
 Design Considerations for Combined Trickling-Filter Activated Sludge-Systems

9-5 Activated Sludge with Fixed Film Packing

 Processes with Internal Suspended Packing for Attached Growth
 Processes with Internal Fixed Packing for Attached Growth

9-6 Design of Submerged Attached Growth Processes

 Downflow Submerged Attached Growth Processes
 Upflow Submerged Attached Growth Processes
 Fluidized Bed Bioreactors (FBBR)

Problems and Discussion Topics
References
Chapter 10 Anaerobic Suspended and Attached Growth Biological Treatment Processes

10-1 The Rationale for Anaerobic Treatment

Advantages of Anaerobic Treatment Processes
Disadvantages of Anaerobic Treatment Processes
Summary Assessment

10-2 Biological Denitrification

Downflow Packed-Bed Postanoxic Denitrification Processes
Upflow Packed-Bed Postanoxic Denitrification Reactors
Fluidized-Bed Reactors for Postanoxic Denitrification
Submerged Rotating Biological Contactors
Suspened Growth Postanoxic Denitrification Process
Attached Growth Preanoxic Denitrification Processes

10-3 General Design Considerations for Anaerobic Treatment Processes

Characteristics of the Wastewater
Sulfide Production
Ammonia Toxicity
Liquid-Solids Separation
Solids Retention Time
Expected methane gas production
Treatment Efficiency Needed

10-4 Anaerobic Suspended Growth Processes

Complete-Mix Process
Anaerobic Contact Process
Anaerobic Sequence Batch Reactor
Design of Anaerobic Suspended Growth Processes

10-5 Anaerobic Sludge Blanket Processes

Upflow Sludge Blanket Reactor Process
Design Considerations for UASB Process
Anaerobic Baffled Reactor
Anaerobic Migrating Blanket Reactor

10-6 Attached Growth Anaerobic Processes

Upflow Packed-Bed Attached Growth Reactor
Upflow Attached Growth Anaerobic Expanded-Bed Reactor
Attached Growth Anaerobic Fluidized-Bed Reactor
Downflow Attached Growth Processes

10-7 Other Anaerobic Treatment Processes

Covered Anaerobic Lagoon Process
Membrane Separation Anaerobic Treatment Process

Problems and Discussion Topics
References
Chapter 11 Advanced Wastewater Treatment

11-1 Need for Advanced Wastewater Treatment

11-2 Technologies Used for Advanced Treatment
 - Residual Constituents in Treated Wastewater
 - Classification of Technologies
 - Removal of Organic and Inorganic Colloidal and Suspended Solids
 - Removal of Dissolved Organic Constituents
 - Removal of Dissolved Inorganic Constituents
 - Removal of Biological Constituents
 - Process Selection and Performance Data

11-3 Introduction to Depth Filtration
 - Description of the Filtration Process
 - Filter Hydraulics
 - Analysis of the Filtration Process

11-4 Selection and Design Considerations for Depth Filters
 - Available Filtration Technologies
 - Performance of Different Types of Filter Technologies
 - Issues Related to Design and Operation of Treatment Facilities
 - Importance of Influent Wastewater Characteristics
 - Selection of Filtration Technology
 - Filter Bed Characteristics
 - Filter Flowrate Control
 - Filter Backwashing Systems
 - Filter Appurtenances
 - Filter Instrumentation and Control Systems
 - Effluent Filtration with Chemical Addition
 - Filter Problems
 - Need for Pilot-Plant Studies

11-5 Surface Filtration
 - Diskfilter ®
 - Cloth-Media Disk Filter ®
 - Performance Characteristics

11-6 Membrane Filtration Processes
 - Membrane Process Terminology
 - Membrane Process Classification
 - Membrane Configurations
 - Membrane Operation
 - Membrane Fouling
 - Application of Membranes
 - Electrodialysis
 - Pilot Studies for Membrane Applications
 - Disposal of Concentrated Waste Streams
11-7 Adsorption
Types of Absorbents
Fundamentals of Adsorption
Activated-Carbon Adsorption Kinetics
Activated-Carbon Treatment Process Applications
Analysis and Design of Granular Activated-Carbon Contactor
Small-Scale Column Tests
Analysis and Design of Powdered Activated-Carbon Contactor
Activated Sludge-Powdered Activated-Carbon Treatment

11-8 Gas Stripping
Analysis of Gas Stripping
Design of Stripping Towers
Application

11-9 Ion Exchange
Ion-Exchange Materials
Typical Ion Exchange Reactions
Exchange Capacity of Ion-Exchange Resins
Ion-Exchange Chemistry
Application of Ion Exchange
Operational Considerations

11-10 Advanced Oxidation Processes
Theory of Advanced Oxidation
Technologies Used to Produce Hydroxyl Radicals
Applications
Operational Problems

11-11 Distillation
Distillation Processes
Performance Expectations in Reclamation Applications
Operating Problems
Disposal of Concentrated Waste

Problems and Discussion Topics
References
Chapter 12 Disinfection Process

12-1 Regulatory Requirements for Wastewater Disinfection

12-2 Disinfection Theory
 Characteristics for an Ideal Disinfectant
 Disinfection Methods and Means
 Mechanisms of Disinfectants
 Factors Influencing the Action of Disinfectant

12-3 Disinfection with Chlorine
 Characteristics of Chlorine Compounds
 Chemistry of Chlorine Compounds
 Breakpoint Reaction with Chlorine
 Measurement and Reporting of Disinfection Process Variables
 Germicidal Efficiency of Chlorine and Various Chlorine Compounds
 Factors that Affect Disinfection Efficiency of Chlorine
 Modeling the Disinfection Process
 Review of the CRt Concept
 Required Chlorine Dosage for Disinfection
 Formation and Control of Disinfection Byproducts
 Environmental Impacts

12-4 Disinfection with Chlorine Dioxide
 Characteristics of Chlorine Dioxide
 Chlorine Dioxide Chemistry
 Effectiveness of Chlorine Dioxide as a Disinfectant
 By-Product Formation and Control
 Environmental Impacts

12-5 Dechlorination
 Need for Dechlorination
 Dechlorination of Wastewater Treated with Chlorine and Chlorine Compounds
 Dechlorination of Chlorine Dioxide with Sulfur Dioxide

12-6 Design of Chlorination and Dechlorination Facilities
 Sizing Chlorination Facilities
 Application Flow Diagrams
 Dosage Control
 Injection and Initial Mixing
 Chlorine Contact Basin Design
 Outlet Control and Chlorine Residual Measurement
 Chlorine Storage Facilities
 Chemical Containment Facilities
 Dechlorination Facilities
12-7 Disinfection with Ozone
 Ozone Properties
 Ozone Chemistry
 Ozone Disinfection Systems Components
 Effectiveness of Ozone as a Disinfectant
 Modeling the Ozone Disinfection Process
 Required Ozone Dosages for Disinfection
 By-Product Formation and Control
 Environmental Impacts of Using Ozone
 Other Benefits of Using Ozone

12-8 Other Chemical Disinfection Methods
 Peracetic Acid
 Ozone/Hydrogen Peroxide (Peroxone)
 Combined Chemical Disinfection Processes

12-9 Ultraviolet (UV) Radiation Disinfection
 Source of UV Radiation
 UV Disinfection System Components and Configurations
 Germicidal Effectiveness of UV Radiation
 Modeling the UV Disinfection Process
 Estimating UV Dose
 Ultraviolet Disinfection Guidelines
 Selection and Sizing of a UV Disinfection System
 Troubleshooting UV Disinfection Systems
 Environmental Impacts of UV Radiation Disinfection

12-10 Comparison of Alternative Disinfection Technologies
 Germicidal Effectiveness
 Advantages and Disadvantages

Problems and Discussion Topics
References
Chapter 13 Water Reuse

13-1 Water Reclamation and Reuse: An Introduction
 Definition of Terms
 The Role of Water Recycling in the Hydrologic Water Cycle
 Historical Perspective
 Wastewater Reuse Applications
 Need for Water Reuse

13-2 Public Health and Environmental Issues in Water Reuse
 Constituents in Reclaimed Water
 Public Health Issues
 Environmental Issues
 The Evolution of Water Reuse Guidelines in The United States
 Water Reclamation Criteria in Other Countries
 What Level of Treatment is Necessary?

13-3 Introduction to Risk Assessment
 Risk Assessment
 Risk Management
 Ecological Risk Assessment
 Risk Assessment for Water Reuse

13-4 Water Reclamation Technologies
 Constituent Removal Technologies
 Conventional Reclamation Treatment Process Flow Diagrams for Water Reclamation
 Advanced Wastewater Treatment Process Flow Diagrams
 Performance Expectations for Water Reclamation Processes
 Predicting the Performance of Treatment Process Combinations
 Treatment Process Reliability

13-5 Storage of Reclaimed Water
 Need For Storage
 Meeting Water Quality Discharge Requirements
 Operation of Storage Reservoirs
 Problems Involved with Storage of Reclaimed Water
 Management Strategies for Open and Enclosed Reservoirs

13-6 Agricultural and Landscape Irrigation
 Evaluation of Irrigation Water Quality
 Miscellaneous Problems

13-7 Industrial Water Reuse
 Industrial Water Use
 Cooling Tower Makeup Water
 Water and Salt Balances in Cooling Tower
 Common Water Quality Problems in Cooling Tower Systems
13-8 Groundwater Recharge with Reclaimed Water
 Groundwater Recharge Methods
 Pretreatment Requirements for Groundwater Recharge
 Fate of Contaminants in Groundwater
 Groundwater Recharge Guidelines

13-9 Planned Indirect and Direct Potable Water Reuse
 Planned Indirect Potable Water Reuse
 Planned Direct Potable Water Reuse
 Planned Potable Water Reuse Criteria
 “From Toilet-to-Tap”: Is it the Ultimate Reuse Goal?

13-10 Planning for Wastewater Reclamation and Reuse
 Planning Basis
 Market Assessment
 Monetary Analyses
 Other Planning Factors
 Planning Report

13-11 Epilogue on Water Reuse Issues

 Problems and Discussion Topics
 References
Chapter 14 Treatment, Reuse, and Disposal of Solids and Biosolids

14-1 Solids Sources, Characteristics, and Quantities
 Sources
 Characteristics
 Quantities

14-2 Regulations for the Reuse and Disposal of Solids in The United States
 Land Application
 Surface Disposal
 Pathogen and Vector Attraction Reduction
 Incineration

14-3 Solids Processing Flow Diagrams

14-4 Sludge and Scum Pumping
 Pumps
 Headloss Determination
 Sludge Piping

14-5 Preliminary Operations
 Grinding
 Screening
 Degritting
 Blending
 Storage

14-6 Thickening
 Application
 Description and Design of Thickeners

14-7 Introduction to Stabilization

14-8 Alkaline Stabilization
 Chemical Reactions in Lime Stabilization
 Heat Generation
 Application of Alkaline Stabilization Processes

14-9 Anaerobic Digestion
 Process Fundamentals
 Description of Mesophilic Anaerobic Digestion Processes
 Process Design for Mesophilic Anaerobic Digestion
 Selection of Tank Design and Mixing System
 Methods for Enhancing Solids Loading and Digester Performance
 Gas Production, Collection, and Use
 Digester Heating
 Thermophilic Anaerobic Digestion
 Two-Phased Anaerobic Digestion

14-10 Aerobic Digestion
 Process Description
 Conventional Air Aerobic Digestion
 Dual Digestion
 Autothermal Thermophilic Aerobic Digestion (ATAD)
 High-Purity Oxygen Digestion
14-11 Composting
 Process Microbiology
 Process Description
 Design Considerations
 Cocomposting with Municipal Solid Wastes
 Public Health and Environmental Issues

14-12 Conditioning
 Chemical Conditioning
 Other Conditioning Methods

14-13 Dewatering
 Centrifugation
 Belt-Filter Press
 Filter Presses
 Sludge Drying Beds
 Reed Beds
 Lagoons

14-14 Heat Drying
 Heat Transfer Methods
 Process Description
 Product Characteristics
 Product Transfer and Storage
 Fire and Explosion Hazards
 Air Pollution and Odor Control

14-15 Incineration
 Fundamentals Aspects of Complete Combustion
 Multiple-Hearth Incineration
 Fluidized-Bed Incineration
 Coincineration with Municipal Solid Waste
 Air-Pollution Control

14-16 Solids Mass Balances
 Preparation of Solids Mass Balances
 Performance Data for Solids-Processing Facilities
 Impact of Return Flows and Loads

14-17 Application of Biosolids to Land
 Site Evaluation and Selection
 U.S. EPA Regulations for Beneficial Use and Disposal of Biosolids
 Design Loading Rates
 Application Methods
 Application to Dedicated Lands
 Landfilling

14-18 Biosolids Conveyance and Storage
 Conveyance Methods
 Storage

Problems and Discussion Topics
References
Chapter 15 Issues Related to Treatment Plant Performance

15-1 Need for Upgrading Treatment-Plant Performance

 Meeting Current and Future Needs
 Meeting More Stringent discharge Requirements

15-2 Odor Management

 Types of Odors
 Sources of Odors
 Movement of Odors from Wastewater Treatment Facilities
 Strategies for Odor Control
 Odor Treatment Methods
 Selection and Design of Odor Control Facilities
 Design Considerations for Chemical Scrubbers
 Design Considerations for Odor Control Biofilters

15-3 Treatment Process Reliability

 Variability of Influent Wastewater Characteristics
 Variability in Wastewater Treatment Processes
 Mechanical Process Reliability
 Selection of Process Design Parameters

15-4 Introduction to Automatic Process Control

 Process Disturbances
 Control Systems for Wastewater Treatment Plants
 Control Algorithms
 Description of Automatic Control System Elements

15-5 Energy Efficiency in Wastewater

 Overview of the Use of Electricity in Wastewater Treatment
 Measures for Improving Energy Efficiency

15-6 Upgrading Wastewater Treatment and Plant Performance

 Process Optimization
 Upgrading Existing Wastewater Treatment Facilities
 Options for Improving Energy Efficiency

15-7 Important Design Considerations for New Wastewater Treatment Plants

 Process Design Considerations for Liquid Streams
 Process Design Considerations for solids Processing
 Odor Control

Problems and Discussion Topics

References
Appendix A
Appendix B Physical Properties of Selected Gases and the Composition of Air
Appendix C Physical Properties of Water
Appendix D Solubility of Dissolved Oxygen in Water as a Function of Salinity and Barometric Pressure
Appendix E MPN Tables and Their Use
Appendix F Moody Diagrams for the Analysis of Flow in Pipes

Name Index
Subject Index