Design of Analog CMOS Integrated Circuits

Behzad Razavi

Errata

p. 6, Section 1.3, first sentence should read: The idea of metal-oxide-semiconductor ...

p. 26, In Eq. (2.28), move 1 + M_{DS} from the denominator to the numerator.

p. 32, fifth line from top: change 4\Phi_F to 4|\Phi_F|.

p. 88, second line below Eq. (3.124) should read: ... roughly \(g_m r_D^2 \).

p. 128, fifth line from bottom: change \(M_2 \) to \(M_3 \). Fourth line from bottom: change \(M_1 \) to \(M_2 \).

p. 155, first line: change Chapter 3 to Chapter 4.

p. 156, eighth line from top: change Chapter 3 to Chapter 4.

p. 210, eighth line from bottom: change \(M_2 \) to \(M_3 \). Fourth line from bottom: change \(M_3 \) to \(M_2 \).

p. 226, Eq. (7.58): change \(V_{t_2} \) to \(V_{t_{in}} \).

p. 249, fifth line from top, change \(XA/(1+\beta A) \) to \(XA/\beta / (1+\beta A) \). Sixth line from top should read: Approaching \(X \) ...

p. 286, Problem 8.12: change \(I_{D2} \) to 0.25 mA.

p. 296: last line should read ... exhibits a mirror pole (Chapter 6).

p. 306, fifth line from top should read: \(g_m 7.8 = 0.005 \) A/V.

p. 308, second line from bottom: change \(V_{out2} \) to \(V_{out1} \).

p. 310, last sentence should read: ... in 1979 [4] and ... in 1990 [5, 6].

p. 327, Fig. 9.51 caption should read: Response of linear op amp to a step.

p. 336: Eq. (9.44): move the denominator to the numerator.

p. 358, sixth line from top should read: To \(-90^\circ \) ...

p. 382, first line from top should read: Intrinsic carrier ...

p. 384, Eq. (11.18) should read: \(V_{BE} = V_T \) ...

p. 452, Eq. (13.8) should read: \(+ \alpha_3 A^2 \cos \omega t \).

p. 455, Eq. (13.26) should read: \(y(t) = \alpha_1 [(V_m - \beta a)] \) ...

p. 473, last line: change \(A_{ux} \) to \(A_{aux} \).

p. 518, Caption of Fig. 14.48 should read: (c) largest delay.

p. 543, sentence above Fig. 15.15 should end as: ... than does \(y(t) \).

p. 553: Example 15.8: Waveforms at E and F change simultaneously, leading to a reset pulsewidth of about five gate delays (rather than 10 gate delays).

Fig. 1.

p. 555, first line in Solution should read 5 gate delays ...

p. 562, first line from bottom should read \(T_p \approx 5T_D \) ...

p. 590, Fig. caption should read: (a) Decrement in channel length for small \(V_{DS} \), (b) decrement in channel length for large \(V_{DS} \), (c) effect on the output impedance.

p. 591, fifth line from top: change \(V_{D, sat} \) to \(V_{D:S, sat} \).