Section 7.2
Graph Terminology

Undirected Graphs

Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

The edge e connects u and v.

The vertices u and v are endpoints of e.

Definition: The degree of a vertex v, denoted $\text{deg}(v)$, is the number of edges for which it is an endpoint.

A loop contributes twice in an undirected graph.

Example:

- If $\text{deg}(v) = 0$, v is called isolated.
• If \(\text{deg}(v) = 1 \), \(v \) is called pendant.

The Handshaking Theorem:

Let \(G = (V, E) \). Then

\[
2|E| = \sum_{v \in V} \text{deg}(v)
\]

Proof:

Each edge represents contributes twice to the degree count of all vertices.

Q. E. D.

Example:

If a graph has 5 vertices, can each vertex have degree 3? 4?

• The sum is \(3 \cdot 5 = 15 \) which is an odd number. Not possible.

• The sum is \(20 = 2 \cdot |E| \) and \(20/2 = 10 \). May be possible.
Theorem: A graph has an even number of vertices of odd degree.

Proof:

Let \(V_1 \) = vertices of odd degree

\(V_2 = \) vertices of even degree

The sum must be even. But

- odd times odd = odd
- odd times even = even
- even times even = even
- even plus odd = odd

It doesn't matter whether \(V_2 \) has odd or even cardinality.

\(V_1 \) cannot have odd cardinality.

Q. E. D.

Example:

It is not possible to have a graph with 3 vertices each of which has degree 1.
Directed Graphs

Definition: Let \(<u, v> \) be an edge in \(G \). Then \(u \) is an *initial vertex* and is *adjacent to* \(v \) and \(v \) is a *terminal vertex* and is *adjacent from* \(u \).

Definition: The *in degree* of a vertex \(v \), denoted \(\text{deg}^-(v) \) is the number of edges which terminate at \(v \).

Similarly, the *out degree* of \(v \), denoted \(\text{deg}^+(v) \), is the number of edges which initiate at \(v \).

Theorem: \(|E| = \sum_{v \in V} \text{deg}^{-}(v) = \sum_{v \in V} \text{deg}^{+}(v) \)

Special Simple Graphs

- Complete graphs - \(K_n \): the simple graph with

 - \(n \) vertices
 - exactly one edge between every pair of distinct vertices.

Maximum redundancy in local area networks and processor connection in parallel machines.
Examples:
Note: K5 is important because it is the simplest nonplanar graph: It cannot be drawn in a plane with nonintersecting edges.

- Cycles:

C_n is an n vertex graph which is a cycle. Local area networks are sometimes configured this way called Ring networks.
• Wheels:

Add one additional vertex to the cycle C_n and add an edge from each vertex to the new vertex to produce W_n.

Provides redundancy in local area networks.
• n-Cubes:

Q_n is the graph with 2^n vertices representing bit strings of length n.

An edge exists between two vertices that differ by one bit position.

A common way to connect processors in parallel machines.

Intel Hypercube.
Bipartite Graphs

Definition: A simple graph \(G \) is *bipartite* if \(V \) can be partitioned into two disjoint subsets \(V_1 \) and \(V_2 \) such that every edge connects a vertex in \(V_1 \) and a vertex in \(V_2 \).

Note: There are no edges which connect vertices in \(V_1 \) or in \(V_2 \).

A bipartite graph is *complete* if there is an edge from every vertex in \(V_1 \) to every vertex in \(V_2 \), denoted \(K_{m,n} \) where \(m = |V_1| \) and \(n = |V_2| \).

Examples:

- Suppose bigamy is permitted but not same sex marriages and males are in \(V_1 \) and females in \(V_2 \) and an edge represents a marriage. If every male is married to every female then the graph is complete.

- Supplier, warehouse transportation models are bipartite and an edge indicates that a given supplier sends inventory to a given warehouse.

- A Star network is a \(K_{1,n} \) bipartite graph.
- C_k for k even is a bipartite graph: even numbered vertices in V_1, odd numbered in V_2.
• Is the following graph bipartite?

\[
\begin{array}{c}
a & b & c \\
d & e & a \\
\end{array}
\]

If \(a\) is in \(V1\) then \(e\), \(c\) and \(b\) must be in \(V1\) (why?). Then \(c\) is in \(V1\) and there is no inconsistency.

We rearrange the graph as follows:

\[
\begin{array}{c}
c & b \\
\end{array}
\]

\[
\begin{array}{c}
a & d \\
e & \end{array}
\]

New Graphs from Old

Definition: \((W, F)\) is a subgraph of \(G = (V, E)\) if

\[W \subseteq V \text{ and } F \subseteq E.\]
Definition: If G_1 and G_2 are simple then

$$G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$$

and the graph is simple.

Examples:

- Find the subgraphs of Q_1:

 ![Graph](attachment:image.png)

- Count the number of subgraphs of a given graph.

- Find the union of the two graphs G_1 and G_2:
Note: The important properties of a graph do not depend on how we draw it. We want to be able to identify two graphs that are the same (up to labeling of the vertices).