5.4 Solving Proportions

OBJECTIVE

1. Solve a proportion for an unknown value

A proportion consists of four values. If three of the four values of a proportion are known, you can always find the missing or unknown value.

In the proportion $\frac{a}{3} = \frac{10}{15}$, the first value is unknown. We have chosen to represent the unknown value with the letter a. Using the proportion rule, we can proceed as follows.

$$\frac{a}{3} = \frac{10}{15}$$

$$15 \cdot a = 3 \cdot 10 \quad \text{or} \quad 15 \cdot a = 30$$

The equals sign tells us that $15 \cdot a$ and 30 are just different names for the same number. This type of statement is called an equation.

Definitions: Equation

An equation is a statement that two expressions are equal.

One important property of an equation is that we can divide both sides by the same nonzero number. Here let's divide by 15.

$$15 \cdot a = 30$$

$$\frac{15 \cdot a}{15} = \frac{30}{15}$$

$$\frac{1}{15} \cdot a = 2$$

Divide by the coefficient of the variable. Do you see why we divided by 15? It leaves our unknown a by itself in the left term.

$$a = 2$$

You should always check your result. It is easy in this case. We found a value of 2 for a. Replace the unknown a with that value. Then verify that the fractions are proportional. We started with $\frac{a}{3} = \frac{10}{15}$ and found a value of 2 for a. So we write

$$3 \cdot 10 = 2 \cdot 15$$

$$30 = 30$$

The value of 2 for a is correct.

The procedure for solving a proportion is summarized as follows.
Step by Step: To Solve a Proportion

Step 1 Use the proportion rule to write the equivalent equation \(a \cdot d = b \cdot c\).

Step 2 Divide both terms of the equation by the coefficient of the variable.

Step 3 Use the value found to replace the unknown in the original proportion. Check that the ratios or the rates are proportional.

Example 1

Solving Proportions for Unknown Values

Find the unknown value.

(a) \(\frac{8}{x} = \frac{6}{9}\)

Step 1 Using the proportion rule, we have the following.

\[6 \cdot x = 8 \cdot 9\]

or \(6x = 72\)

Step 2 Locate the coefficient of the variable, 6, and divide both sides of the equation by that coefficient.

\[\frac{6x}{6} = \frac{72}{6}\]

\[x = 12\]

Step 3 To check, replace \(x\) with 12 in the original proportion.

\[\frac{8}{12} = \frac{6}{9}\]

Multiply:

\[12 \cdot 6 = 8 \cdot 9\]

\[72 = 72\] The value of 12 for \(x\) checks.

(b) \(\frac{3}{5} = \frac{b}{25}\)

Step 1 Use the proportion rule.

\[5 \cdot b = 3 \cdot 25\]

or \(5 \cdot b = 75\)

Step 2 Locate the coefficient of the variable, 5, and divide both sides of the equation by that coefficient.

\[\frac{5b}{5} = \frac{75}{5}\]

\[b = 15\]
Step 3 To check, replace b with 15 in the original proportion.

\[
\frac{3}{5} = \frac{15}{25}
\]

Multiply:

\[
5 \cdot 15 = 3 \cdot 25
\]

\[
75 = 75 \quad \text{The value of 15 checks for } b.
\]

CHECK YOURSELF 1

Solve the proportions for n. Check your result.

(a) \(\frac{4}{5} = \frac{n}{25} \)
(b) \(\frac{7}{9} = \frac{42}{n} \)

In solving for a missing term in a proportion, we may find an equation involving fractions or decimals. Example 2 involves finding the unknown value in such cases.

Example 2

Solving Proportions for Unknown Values

(a) Solve the proportion for x.

\[
\frac{1}{4} = \frac{4}{x}
\]

\[
\frac{1}{4} \cdot x = 12
\]

We divide by the coefficient of x.

In this case it is $\frac{1}{4}$.

\[
\frac{1}{4} = \frac{12}{1}
\]

Remember: $\frac{12}{1}$ is $12 \div \frac{1}{4}$.

\[
x = \frac{12}{4}
\]

Invert the divisor and multiply.

\[
x = 48
\]

To check, replace x with 48 in the original proportion.

\[
\frac{1}{4} \cdot \frac{4}{3} = \frac{4}{48}
\]

\[
3 \cdot \frac{4}{48} = \frac{1}{4} \cdot 48
\]

\[
12 = 12
\]
(b) Solve the proportion for \(a \).

\[
\frac{0.5}{2} = \frac{3}{a}
\]

\[
0.5a = 6
\]

NOTE Here we must divide 6 by 0.5 to find the unknown value. The steps of that division are shown below for review.

\[
\begin{array}{c}
0.5a = 6 \\
\frac{0.5a}{0.5} = \frac{6}{0.5} \\
a = 12
\end{array}
\]

We will leave it to you to confirm that \(0.5 \cdot 12 = 2 \cdot 3 \).

CHECK YOURSELF 2

(a) Solve for \(a \).

\[
\frac{1}{2} = \frac{3}{a}
\]

\[
\frac{2}{5} = \frac{3}{a}
\]

(b) Solve for \(x \).

\[
\frac{0.4}{x} = \frac{2}{30}
\]

CHECK YOURSELF ANSWERS

1. (a) \(5n = 100 \)

To check: \(\frac{5n}{5} = \frac{100}{5} \)

\(n = 20 \)

\(5 \cdot 20 = 4 \cdot 25 \)

(b) \(7n = 42 \cdot 9 \)

To check: \(\frac{7n}{7} = \frac{42 \cdot 9}{7} \)

\(n = 6 \)

\(7 \cdot 6 = 9 \cdot 42 \)

2. (a) 30; (b) 6
5.4 Exercises

Solve for the unknown in each of the following proportions.

1. \(\frac{x}{3} = \frac{6}{9} \)
2. \(\frac{x}{6} = \frac{3}{9} \)
3. \(\frac{10}{n} = \frac{15}{6} \)

4. \(\frac{4}{3} = \frac{8}{n} \)
5. \(\frac{4}{7} = \frac{y}{14} \)
6. \(\frac{7}{m} = \frac{14}{8} \)

7. \(\frac{5}{8} = \frac{a}{16} \)
8. \(\frac{5}{7} = \frac{x}{35} \)
9. \(\frac{8}{p} = \frac{6}{3} \)

10. \(\frac{4}{15} = \frac{8}{n} \)
11. \(\frac{11}{a} = \frac{2}{44} \)
12. \(\frac{5}{x} = \frac{15}{9} \)

13. \(\frac{35}{40} = \frac{7}{n} \)
14. \(\frac{x}{8} = \frac{15}{24} \)
15. \(\frac{a}{42} = \frac{5}{7} \)

16. \(\frac{7}{12} = \frac{m}{24} \)
17. \(\frac{18}{12} = \frac{12}{p} \)
18. \(\frac{x}{32} = \frac{7}{8} \)

19. \(\frac{x}{18} = \frac{64}{72} \)
20. \(\frac{20}{15} = \frac{100}{a} \)
21. \(\frac{6}{n} = \frac{75}{100} \)

22. \(\frac{36}{x} = \frac{8}{6} \)
23. \(\frac{5}{35} = \frac{a}{28} \)
24. \(\frac{20}{24} = \frac{p}{18} \)

25. \(\frac{12}{100} = \frac{3}{x} \)
26. \(\frac{b}{7} = \frac{21}{49} \)
27. \(\frac{p}{24} = \frac{25}{120} \)

28. \(\frac{5}{x} = \frac{20}{88} \)
29. \(\frac{1}{2} = \frac{3}{a} \)
30. \(\frac{x}{5} = \frac{2}{3} \)

ANSWERS

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Answers

1. \(9x = 18; x = 2 \)
3. 4
5. 8
7. 10
9. 4
11. 242

13. \(35n = 280; n = 8 \)
15. 30

17. \(18p = 144; p = 8 \)
19. 16
21. 8

23. \(35a = 140; a = 4 \)
25. 25
27. 5
29. 12
31. 2

33. 24
35. 12
37. 80
39. 0.55